分治法

原理:将大问题转换为一个或多个子问题,知道问题可以轻易解决,最后将子问题的结果进行合并

策略:对于一个规模为n的问题,若该问题可以容易的解决(比如规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解决这些子问题,然后将各个子问题的解合并得到原问题的解。

分治法使用场景

  1. 该问题的规模缩小到一定的程度就可以容易的解决。
  2. 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
  3. 利用该问题分解出的子问题的解可以合并为该问题的解。
  4. 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。

第一条特征是绝大多数问题可以满足的,问题的复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提。它是大多数问题可以满足的,此特征反映了递归思想的应用。第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条,而不具备第三条特征,则可以考虑使用贪心法或者动态规划法。第四条关系到分治法的效率,如果各个子问题是不独立的则分治法要做寻多不必要的工作,重复的解决公共的子问题,此时虽然可用分治法,但一般使用动态规划法较好。

分治法的基本步骤

  • 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题
  • 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题
  • 合并:将各个子问题的解合并为原问题的解

分治法的复杂性分析

一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阈值
分解阈值

,且最小子解规模为1的问题消耗一个单位时间。设将原问题分解为k个子问题以及用merge将K个子问题的解合并为原问题的解需用f(n)个单位时间,用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间:
分支规模——计算时间

可以使用分治法求解的一些经典问题

  1. 二分搜索
  2. 大整数乘法
  3. Strassen矩阵乘法
  4. 棋盘覆盖
  5. 合并排序
  6. 快速排序
  7. 线性时间选择
  8. 最接近点对问题
  9. 循环赛日程表
  10. 汉诺塔
  • 版权声明: 本博客所有文章除特别声明外,著作权归作者所有。转载请注明出处!

请我喝杯咖啡吧~

支付宝
微信